Posts Tagged ‘Bioinformatik’

Simulation: Gefahr einer Pandemie durch infizierte Fluggäste 

11. Oktober 2014
Startpunkt der Seuche in München.

Startpunkt der Seuche in München.

Für mich ist es faszinierend und erschreckend zugleich: Wissenschaftler am Max-Planck-Institut für Informatik haben den Einfluss jedes einzelnen Flughafens weltweit auf die Gefahr einer Pandemie durch infizierte Fluggäste errechnet und eine interaktive Website erstellt.
Wir kennen so Szenarios aus Filmen wie Andromeda – tödlicher Staub aus dem All oder Outbreak – Lautlose Killer oder ganz banalen Zombie-Filmen. Wie lange braucht es, bis sich eine Seuche über die ganze Welt ausbreitet. Was für mich Unterhaltung war, wird durch Ebola Ernst.
Mit der Zunahme des weltweiten Flugverkehrs steigt die Gefahr von Pandemien. Tausende Flugverbindungen täglich – mit zehntausenden Fluggästen in engstem physischen Kontakt – können lokale Ereignisse zu globalen Phänomenen verstärken. Wissenschaftler am Max-Planck-Institut für Informatik haben nun einen Algorithmus entwickelt, der aus der Anbindungsstärke eines Flughafens das Risiko berechnet, dass von dort eine Pandemie beginnt.
Am MPI für Informatik in Saarbrücken wird seit Jahren in der Arbeitsgruppe „Bioinformatik“ an  Modellen der Ausbreitungscharakteristik von Krankheiten oder sozialen Phänomenen innerhalb von Netzwerken geforscht.
Die Wissenschaftler dort haben dazu eine, expected force genannte, Maßzahl entwickelt, die Größe, Dichte und Vielfalt der Verbindungen zu Nachbarknoten kombiniert; die Werte liegen dabei zwischen 0 und 100 und korrelieren zu 90 Prozent mit dem Potential, dass von dem Knoten im Netzwerk eine Ereigniskaskade ausgeht. Das können auch harmlose Ereignisse in sozialen Netzwerken sein, wie z.B. Twitter-Retweets. Für eine Infektionskrankheit im globalen Maßstab manifestiert diese Kaskade aber eine Pandemie.

Verbreitungsszenario

Verbreitungsszenario

Dr. Glenn Lawyer hat diese Maßzahl auf das Netzwerk der weltweiten Flugverbindungen angewendet, für jeden Flughafen weltweit dessen expected force „ExF“ berechnet und auf einer Webseite verfügbar gemacht. Die expected force berechnet sich aus Daten zu Flugverbindungen vom jeweiligen Flughafen und der an den Zielflughäfen folgenden Anschlussverbindungen. Sie wurde auf der Grundlage einer Datenbank von 3.458 Flughäfen mit 68.820 Flugverbindungen und 171 verschiedenen Flugzeugvarianten berechnet. Die ExF eines Flughafens ist von der Anzahl der Flugrouten, deren Frequenz sowie der Sitzkapazität der Flugzeuge bestimmt. Nahe dem Maximum von ExF=100 finden sich Flughäfen mit sehr vielen Verbindungen und hohen Fluggastzahlen (Frankfurt, Atlanta, Peking), annähernd Null sind sehr abgelegene, z.B. Mount Pleasant, Falkland Inseln, ExF=3.
„Die Webseite gibt den Besuchern die Möglichkeit, die Infektionswege innerhalb des Netzwerks von Flugverbindungen nachzuvollziehen,“ erklärt Glenn Lawyer. „Man sieht, wie die Weiterverbreitung vom der Startpunkt beeinflusst ist.“
Die Webseite verdeutlicht, dass die Ausbreitung so lange langsam vor sich geht, bis sie den Netzwerkkern erreicht hat. Ab dann verstärkt sie sich explosionsartig. Die Webseite bietet zwei Modi an: „SI“ nimmt eine Pandemie an und simuliert deren Verlauf bis der gesamte Netzwerkkern betroffen ist; der Modus „SIS“ beschreibt, dass verseuchte Netzwerkknoten mit der Zeit gesunden – eine Pandemie entsteht nur dann, wenn die Krankheit schnell ausreichend viele Knoten erreicht.

3D-Kino beschleunigt die Entwicklung von Medikamenten

17. April 2010
Mit Ballview kann man in die virtuelle Welt von Wirkstoff-Molekülen, DNA und Viren eintauchen.

Mit Ballview kann man in die virtuelle Welt von Wirkstoff-Molekülen, DNA und Viren eintauchen.

Wer für ein Türschloss den passenden Schlüssel sucht, muss eine räumliche Vorstellung davon haben. Ähnlich geht es Forschern, die Formen und Strukturen von Molekülen begreifen müssen, um neue Medikamente zu entwerfen. Bioinformatiker in Saarbrücken und Tübingen haben dafür die frei verfügbare Software Ballview entwickelt. Mit ihrer Hilfe kann man jetzt wie in einem 3D-Kino in die virtuelle Welt von Wirkstoff-Molekülen, DNA und Viren eintauchen. Außerdem haben die Wissenschaftler ermöglicht, dass internationale Forscher-gruppen über das neue 3D-Internet im Medikamentendesign zusammenarbeiten können.
Mit der Software Ballview können komplizierte Moleküle und deren physikalische Eigenschaften, aber auch umfangreiche biologische Systeme wie etwa Viren berechnet und visualisiert werden. Damit Forscher sich noch besser die räumlichen Strukturen der Moleküle vorstellen können, werden diese jetzt auch stereoskopisch dargestellt. Dabei werden zwei Bilder an einer Leinwand so übereinander gelegt, dass der Betrachter sie durch eine 3D-Brille mit enormer Tiefenwahrnehmung sehen kann. Er erhält dadurch einen äußerst realistischen räumlichen Eindruck und kann die Proteine oder Viren direkt an der Leinwand verschieben, in einzelne Bereiche hineinzoomen und diese dann bearbeiten. Dabei kommen moderne Eingabegeräte wie die 3D-Spacemouse zum Einsatz, mit der man in virtuellen Umgebungen Objekte bewegen kann. Auch das so genannte Headtracking, das die Kopfbewegungen des Anwenders über Infrarotsensoren erfasst, hilft bei der Steuerung.
Dr. Andreas Hildebrandt leitet eine Forschergruppe am Zentrum für Bioinformatik und dem Intel Visual Computing Institute der Universität des Saarlandes. Sein Team kombinierte die neue Visualisierungstechnik mit dem Ray-Tracing-Verfahren, das vom Computergraphik-Team um Professor Philipp Slusallek zur Marktreife gebracht wurde. Damit können die räumlichen Strukturen der Moleküle auf sehr realistische Weise mit Licht, Schatten und Spiegelungen dargestellt werden. Diese erweiterte Ballview-Software, die bisher nur an zweidimensionalen Bildschirmen zum Einsatz kam, kann jetzt auch im 3D-Kino an der stereoskopischen Leinwand betrachtet werden.
Da im Medikamentendesign viele Forschergruppen auf der ganzen Welt zusammenarbeiten, haben die Saarbrücker Informatiker außerdem die Möglichkeit geschaffen, dreidimensionale Darstellungen über das Internet auszutauschen und anzuzeigen. Die dafür notwendige 3-D-Technologie für das Internet, genannt „XML3D“, wurde von einem Forscherteam um Professor Philipp Slusallek am Intel Visual Computing Institute der Universität des Saarlandes und dem Deutschen Forschungszentrum für Künstliche Intelligenz entwickelt. Durch eine Erweiterung von gewöhnlichen Webbrowser können damit komplexe dreidimensionale Graphiken verarbeitet werden. Diese neue Web-Technologie wurde jetzt auch in die Ballview-Software integriert. So können Wissenschaftler künftig über das Internet Moleküle auf dreidimensionale Weise betrachten und gemeinsam am Bildschirm bearbeiten.
Ballview ist im Rahmen eines Forschungsprojektes am Max-Planck-Institut für Informatik in Saarbrücken entwickelt worden. Heute wird das Open-Source-Programm von drei Forscherteams an den Zentren für Bioinformatik in Saarbrücken und Tübingen weiter entwickelt. Beteiligt sind unter anderem Dr. Andreas Hildebrandt, Professor Hans-Peter Lenhof (Universität des Saarlandes) Professor Oliver Kohlbacher (Universität Tübingen) und Anna Dehof (Universität des Saarlandes). Die Raytracing-Bibliothek RTfact wird durch das Team von Professor Philipp Slusallek entwickelt. Beteiligt sind unter anderem Iliyan Georgiev und Lukas Marsalek von der Universität des Saarlandes.